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1. What is an induction stove 
When I was teaching physics and mathematics in the Danish 9 – 12 grade high school in 2009, a 
teacher (with humanistic profession) who had acquired a induction stove, approached me and 
asked, why it did not work with kitchen pots and pans which were not magnetic. 
At that time, I actually knew nothing specific about induction hobs besides, more generally, that 
they were based on Maxwell’s second equation, when written in integral form, is better known as 
Faraday’s law.  
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A time dependent magnetic flux (magnetic field times the area) through a closed curve, will induce 
an emf (electromagnetic force) around the curve.  
 
Integrating both sides, using Stokes law, we have: 
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So my first answer was, that the efficiency of an induction hub, does not depend whether the 
material is magnetic, as long as it is conducting, so that the induced emf from an alternating 
magnetic flux can drive a current and heats the pan.  
From this point of view a material with high conductivity i.e. cobber, should be most efficient.  
A crude calculation showed that the heat generated in fact should be proportional to the specific 
conductivity of the material. 
 
This seems from a physical point of view to be entirely plausible, but when I shortly afterwards (as 
a cheep offer) bought an induction hub, and tried it with cobber and aluminium pots and pans it did 
not work at all. (What I could also have read in the user guide!). 
 
What I realized was, that the Maxwell equations, that I knew of, are actually only valid in vacuum, 
but also that there are large differences, when for example, there are applied in materials with a 
magnetic dipole moment as iron or nickel. 
The magnetic flux in the metal, comes of course from the B-field in the metal, which is 
proportional to H, the field outside the metal times the relative permeability r .  
 
  HB r  
 
Then I went ahead with a calculation of the power P, which is generated from an alternating 
magnetic field in the metal. 
Since the field lines from the electric field that causes the eddy currents in the metal can be 
considered circular, we slice the bottom of the metallic disc into ring with thickness dr.  
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The disc itself is assumed to have thickness w, and radius r0.  See the figure below. 

The resistance in a ring with radius r is according to the formula: 
A

l
R   where ρ is the 

resistivity of the material, l is the length and A is the cross section area, so we find for dR. 
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The flux through the ring is: HrBr rB  22  . Here r  is the relative permeability for the 
disc, and H is the external magnetic field generated by the coil.  
 
In each ring is induced an emf (electromagnetic force). 
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Where B  is the magnetic flux through the ring. The power dP which is set aside in the ring is: 
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The power can then be found by integration. 
The outer magnetic field is assumed to be given by: tieBtH 
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Wethen get an expression for the induced emf in a ring with radius r.  
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As it is the case with an alternation voltage, the effective value is obtained by taking the modulus 

multiplied by 2
2 .  
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Integrating this expression from 0 to r0 , (the radius of the disc) we find: 
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You may wonder why we integrate over 1/dR instead of integrating over dR, but this is as it should 
be, since the rings can be considered as resistances in parallel, according to the formula:  
1/R = 1/R1 +1/R2. 
 
In the popular description of induction cooking plates, you can read that they are driven by a high 
frequency magnetic field, but I have not been able to find a value for the frequency. 
  
To asses whether the calculation above bears any relation to reality, I have put (somewhat 
arbitrary). The thickness of the plate in the iron pot w = 5mm. The peak value of the external of the 
inducting magnetic field B0 = 0.10 Wb/m2. The cyclic frequency of the field ω = 2π∙1kHz, and the 
radius of the pot r0 = 10 cm. The relative permeability for iron is μr = 66, and the resistivity of iron 
is ρ = 8.9 10-2 Ωm. 
 
When this is inserted in the expression for the delivered power P, it gives 1887 W, which must be 
considered as very satisfactory. But the crucial point is of course the magnitude and the frequency 
of the external magnetic field, which generates the eddy currents, since they enter as the square in 
the formula for the generated power. So, for example, if the frequency or the generating field is 10 
times less, then the generated power is 100 times less. 
  
The important point here is that the power generated grows with the square of the B-field, the 
relative permeability of the metal μr , and of the cyclic frequency ω. 
  
The relative permeability for iron μr = 66, while for Aluminium it is 2. So the ration of the 
dissipation of power in an Al plate and a Fe plate is: (2/66)2 1000/1)66/2( 2  . 
Since copper is diamagnetic and μr = -1, the relative permeability of cobber and Aluminium, serve 
as an definite explanation why an induction hub only work on cookware made of iron. 
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This is, however, not the whole story, since we have not yet considered the possible influence of 
self-inductance, and the possible contribution from the forced oscillations of the magnetic dipole 
moments of the iron atoms.  

2. Including self-inductance 
In the calculations above, we chose in the first place to ignore the phenomenon of the self 
inductance coming from the eddy currents in the iron plate. For completeness, we shall include 
self-induction in the calculation, although it turns out that it does not change the result 
significantly.  
However, when taking account the self-inductance the calculations progress in a rather different 
way. 
 
 
 
 
 
 
 
 
 
 
 
 
The setup is shown schematically above. The coil can be considered as an ideal coil in series with 
a resistance. The coil is imposed to a forced oscillation from an external field according to the 
voltage equation.  
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Trying with a solution:   tieii 0  gives: 
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The effective value of i0 is thus:  02
2 iieff   

To apply this to the induction hub, we must replace R with dR and the inductance L, with the 
inductance of a single turn. Unfortunately there is no simple formula for the magnetic field from a 
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single turn, but if we apply the expression for the B- field in the centre of a circular conductor with 
radius r, then it is probably not entirely wrong. (Cf. The Helmholtz coils, where magnetic field in 
between the two coils is almost homogenous). The B-field in the centre of a single coil having a 

current i is given by: 
r

i
B

20  , as can be derived from Biot and Savart’s law. The magnetic flux 

through the circular coil with cross section A then becomes: rir
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If we then compare the two expressions for the induced emf. 
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Which can be reduced to: 
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In the denominator square root the last term is seen to be vanishing compared to 1, so if we discard 
that term we simply get: 
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And for the power we find: 
 

dP= ieff
2dR = 22

2

22
0

2

42

12
drr

wB

wdr

r


     which gives    drr

wB
dP 3

2
0

2

4 

  

 
If the metal plate is a metal with the relative permeability r , then B0 should be multiplied with 
that factor. We finally end up with exactly the same expression as we got before, though it was 
derived in a quite different manner. This is of course satisfactory. At the same time we have shown 
that the self inductance plays a very little role in the calculation of the released power in the 
induction hub. 
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3. The contribution from the magnetic moments 
Whereas self-induction gives a minimal contribution to the functionality of the induction hub, we 
can be almost certain that there comes a contribution to the heating from the rotational energy of 
the magnetic moments of the iron atoms. The formulas for the potential energy of and the torque 
on the magnetic moments μ from a magnetic field are:  
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As we have demonstrated above one can fairly easy calculate the contribution to the heating of the 
plate from the eddy currents.  It is, however, far more complicated to estimate the contribution 
from the magnetic moments in an oscillating field.   
 
Firstly it is necessary to know the hysteresis curve for the iron as well as the magnetic dipole 
moments for the atoms, and even when both are well known, a calculation may be unrealistic. 
Below are sketched three hysteresis curves, where only the first two have anything to do with 
reality. But for the last two seem to be mathematically equivalent when calculating the loss in 
potential energy. 

 

The potential energy of a magnetic moment is


 BEpot  , and we shall evaluate the loss in 

potential energy, when a magnetic moment is put through the curve, starting and ending in the 
same point.   
For the first curve the loss will be zero, and for the last curve, the contribution from the horizontal 
lines also be zero, since the B-field is constant. On the vertical lines, however, there will be 
contributions -2μB and 2μB, so that Δ Epot = -4 μB.  
 
In the Feynmann Lectures II (from 1964) there is a rather comprehensive and detailed description 
of Ferro magnetism. Here you can learn that ferromagnetism is entirely due from the magnetic 
moment of one electron, having the magnitude of one Bohr magneton. 
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Evaluating the number of iron atoms in an iron plate in the bottom of the previously mentioned 
cooking pot, we find: 
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We then find  that JNBEpot 7.494   . Multiplying with a frequency of 1 kHz, we find in 

this (presumably unrealistic calculation) a power of 49.7 kW. So something is definitely wrong, 
at least with the magnitudes of the magnetic field or the oscillating frequency of the external 
magnetic field. 
Also the atoms will rotate, only when the frequency is near resonance of the atoms. 
 
Furthermore, the power from the eddy currents grows with the square of the magnetic field and the 
square of the frequency, whereas the powers from the magnetic moments grow linearly with these 
quantities. 
 
It is of course possible to chose an external magnetic field and a frequency that results in a power 
of about 2 kW, but this is not really interesting, as long as we don’t know the detailed dynamics of 
the magnetic moments. 
Although we have not reached a quantitative description of the functionality of the induction stove, 
we have accounted for the physics of the two mechanisms that contribute to an induction hub. 
 


